Impacts of seeding and seeding plus mulching treatments on exotic plant invasion and native plant recovery following the 2010 Fourmile Canyon Fire, Colorado

Paula J. Fornwalt, PhD

Research Ecologist

USDA Forest Service, Rocky Mountain Research Station, 240 West Prospect Road, Fort Collins,

Colorado 80526

Final Report to Boulder County Parks and Open Space

12 February 2012

Abstract

Following the 2010 Fourmile Canyon Fire, 170 ha (422 ac) of moderately and severely burned areas were seeded with a mixture of quick growing grass species to provide exotic plants with competition during the first few postfire years. Additionally, some seeded areas were also mulched for runoff and erosion control. We established a network of unburned (UNBURN), burned only (BURN), burned and seeded (SEED), and burned, seeded, and mulched (SEEDMULCH) plots to (1) quantify seeded grass germination and establishment, (2) assess the impacts of seed and seed plus mulch treatments on exotic plants, and (3) examine if native plant recovery is impacted by seed and seed plus mulch treatments. We found that the seeding treatments, both alone and in combination with mulching, had no impact on exotic plants during the first postfire year, probably because seeded grass and mulch cover were generally low. The native plant community also appears to be largely unaffected by the treatments at this point in time. Our results provide Boulder County Parks and Open Space with scientific data on the effectiveness of postfire seeding and seeding plus mulching treatments at meeting treatment objectives in the first postfire year. In view of the considerable cost of postfire rehabilitation activities, we recommend that additional work be conducted over the next few critical postfire years so that longer-term trends can be identified.

Introduction

By consuming vegetation and litter, altering soil structure, and increasing light and nutrient availability, severe wildfires greatly increase the risk of soil erosion, water runoff, and exotic plant establishment (D'Antonio 2000; Zouhar *et al.* 2008; Fornwalt *et al.* 2010). Post-fire damage due to erosion, runoff, and exotic plants can be extensive and costly, especially when both ecosystem properties (*e.g.*, nutrient cycling, plant succession, hydrologic processes) and human values (*e.g.*, water supplies, infrastructure) are affected (Beyers 2004). Because damage due to these threats can be extensive and costly, managers commonly prescribe postfire stabilization and rehabilitation treatments such as seeding and mulching (Robichaud *et al.* 2000, 2010; Peppin *et al.* 2011).

Postfire seeding and mulching treatments may have both intended and unintended impacts on understory plant communities. Seeding treatments typically utilize seeds of exotic cereal or pasture grasses because they are inexpensive, readily available, and quick growing, although native species increasingly are being incorporated into seed mixes (Robichaud *et al.* 2000; Peppin *et al.* 2011). While seeding may be prescribed in an attempt to combat a variety of postfire risks, including exotic species establishment and spread, the treatments are nonetheless predicated on the assumption that seeded species will enhance total plant cover. However, seeding is often ineffective due to poor seeded species establishment (Robichaud *et al.* 2000; Beyers 2004). Conversely, high rates of establishment may unintentionally suppress the regeneration of natives (Beyers 2004). Early-successional natives, which commonly establish following fire from the soil seedbank, appear to be particularly impacted (Schoennagel and Waller 1999; Keeley 2004).

Mulching treatments, in contrast, typically have erosion control as their primary objective (Robichaud *et al.* 2010); however, mulching may also impact understory plants. Agricultural straw is the most widely used material, but wood excelsior, wood strands, and wood chips have also been utilized (Robichaud *et al.* 2010). When combined with seeding, mulching has the potential to encourage seeded species establishment by minimizing seed movement, conserving soil moisture, and moderating soil temperatures (Binkley *et al.* 2003; Massman *et al.* 2006; Miller and Seastedt 2009). Similarly, mulching may encourage plant development from soilstored seeds and from surviving belowground organs. Mulching may also reduce plant-available soil nitrogen (N), at least temporarily (Binkley *et al.* 2003); this may discourage the establishment of exotic species with high N demand (Zink and Allen 1998; Perry *et al.* 2010). However, thickly-applied mulch may actually impede understory plant development by reducing water penetration into the soil and physically obstructing seedling emergence (Massman *et al.* 2006; Robichaud *et al.* 2010). Both seeding and mulching may also unintentionally introduce exotics if materials are contaminated with seeds of exotic species.

Pinus ponderosa (ponderosa pine) – dominated forests in the Colorado Front Range have experienced a series of large and severe wildfires since the mid-1990s. To date, Colorado's most destructive wildfire in terms of damage to personal property is the 2010 Fourmile Canyon Fire, encompassing 2,502 ha (6,181 ac) and causing more than \$217 million in damage (Fourmile Emergency Stabilization Team 2010). Approximately 1,492 ha (3,685 ac) burned with moderate to high severity.

Because the area burned by the Fourmile Canyon Fire is known to contain numerous exotic plant species, many of which are classified as noxious weeds in Colorado, managers prescribed that approximately 170 ha (422 ac) of the Fourmile Canyon Fire be seeded with a

mixture of quick growing grass species (Fourmile Emergency Stabilization Team 2010; C. DeLeo personal communication). Seeding treatments were specifically designed to provide exotic species with competition for light and water during the first few postfire years. Additionally, many of the seeding locations fell within areas to be mulched for runoff and erosion control (Fourmile Emergency Stabilization Team 2010). In this research project, we examined the effectiveness of seeding and seeding plus mulching treatments at minimizing the introduction and spread of exotic plants while promoting native plant establishment. Our specific objectives were as follows:

- Quantify seeded grass establishment and growth, both alone and in combination with mulch.
- Examine the impacts of seeding and seeding plus mulching on noxious weeds and other exotic plant species.
- Assess the effects of seeding and seeding plus mulching treatments on native plant recovery.

Methods

Study area

Our study was conducted in and around the Fourmile Canyon Fire, approximately 10 km (6 mi) west of Boulder, Colorado. The topography in this area is rugged and complex, ranging in elevation from approximately 2,000 to 2,700 m (6,560 to 8,856 ft). Generally, soils are derived from metamorphic and igneous parent materials, and are coarse-textured and poorly developed (USDA NRCS 2008). Annual precipitation averages 48 cm (19 in), much of which falls during the winter and spring (Station 050848, 1893-2010, Western Regional Climate Center, http://www.wrcc.dri.edu). The mean annual temperature is 11° C (51° F), with a mean summer temperature of 21° C (70° F).

The Fourmile Canyon Fire was ignited on September 6, 2010. Gusting winds and low relative humidity on that day allowed the fire to reach approximately 2,321 ha (5,733 ac) by day's end. Fire growth was minimal over the following week, due in part to cooler, moister weather conditions and to aggressive fire suppression efforts. On September 13, 2010, the Fourmile Canyon Fire was declared contained. The final fire size was estimated at 2,502 ha (6,181 ac), 40% of which was unburned or lightly burned (Figure 1); 49% of the fire area burned with moderate severity and 11% with high severity. A more thorough description of the Fourmile's fire behavior and fire suppression efforts, as well as of the fire's physical setting, can be found in Graham *et al.* (2011).

Seeding and mulching treatments were conducted within the Fourmile Canyon Fire in spring 2011 (Fourmile Emergency Stabilization Team 2010; C. DeLeo personal communication; Figures 1 and 2). Seeding treatments were implemented by manually broadcasting and raking in seed on approximately 170 ha (422 ac) of moderately and severely burned areas with 0 to 60% slopes. Seeds were applied within a 30 m buffer on each side of roads and driveways at a rate of 587 seeds m⁻² (55 seeds ft⁻²). Species included in the seeding mix were the native perennial species *Elymus elymoides* (bottlebrush squirreltail), *E. trachycaulus* 'First Strike' ('First Strike' slender wheatgrass), and *Poa secunda* 'UP Colorado Plateau' ('UP Colorado Plateau' Sandberg's bluegrass), and the exotic annual *Avena sativa* (oats; Table 1).

Aerial mulching treatments were applied to approximately 790 ha (1950 ac) of moderately and severely burned forest where slopes were between 20 and 60%. Mulch was applied to achieve 50-75% ground cover. Roughly 82% of the mulched area was treated with certified weed-free *Triticum aestivum* or *Hordeum vulgare* (wheat or barley) straw, and 18% of the area was treated with WoodStraw[®], an engineered wood strand product.

Plot selection

Study plot locations were selected using a two-tiered approach. First, approximately thirty potential plot locations were identified using GIS for each of the following four treatments: unburned (UNBURN), burned (BURN), burned and seeded (SEED), and burned, seeded, and mulched with straw (SEEDMULCH). Due to the relatively small area treated with WoodStraw, this mulching treatment was not evaluated here. All potential plot locations were limited to public lands within ~30 m (100 ft) of public roads. Potential plot locations within the fire were further limited to areas classified as burning with moderate or high severity on the burn severity coverage developed by the Fourmile Emergency Stabilization Team, while potential unburned plots were further limited to areas within 2 km (1.2 mi) of the fire perimeter. Next, because on-the-ground conditions can differ from conditions depicted in GIS coverages, the suitability of each potential plot location was assessed during follow-up visits. Potential plot locations falling in or near riparian areas, on slopes exceeding 40%, or within 100 m (328 ft) of an already-established plot were disregarded. A total of 40 plot locations met all criteria, and plots were established at each.

Data collection

Plots were 100-m^2 (20 m by 5 m) (1076-ft²; 66 ft by 16 ft) in size, and were oriented with the plot's long axis paralleling the road (Figure 3). The understory plant community in each plot was characterized by estimating vegetative cover for each grass, forb, and shrub species in five 1-m^2 (11-ft²) quadrats. Quadrats were equally spaced along a transect bisecting the plot down the long axis. We also noted the presence of all additional species within the larger 100-m^2 plot.

Plots were sampled in mid to late summer to capture maximal plant diversity and cover. Nomenclature follows the USDA Plants Database (USDA NRCS 2011), although varieties and subspecies are not distinguished. In some instances, observations were made only to genus, either because hybridization is common (*e.g.*, *Rosa*), or because species are difficult to determine when sampled outside peak phenological development (*e.g.*, *Antennaria*). We determined the nativity of each species (native or exotic to the continental United States) using the Flora of North America and the Plants Database (Flora of North America Editorial Committee 1993+; USDA NRCS 2011). Voucher specimens were collected and subsequently verified at the Colorado State University herbarium (<u>http://herbarium.biology.colostate.edu/</u>); they are being stored at the Rocky Mountain Research Station in Fort Collins, Colorado.

Burn severity, overstory stand structure, and forest floor data were also collected within each plot. Plot burn severity was assessed as either low, moderate, or high following the methodologies outlined in Parsons *et al.* (2010). Overstory stand structure was determined by measuring diameter at breast height, species, live or dead status, percent crown scorch, and percent crown consumption for all trees over 1.4 m (4.5 ft) tall. Percent cover of abiotic forest floor components including litter, duff, wood, mulch, ash, and bare soil were ocularly estimated in the five $1-m^2$ quadrats. Plot slope and aspect were also noted.

Data analysis

We tested for plot-level differences in site and understory response variables among treatments using multiresponse permutation procedures (MRPP), a nonparametric alternative to analysis of variance. MRPP is a useful tool for ecological data analysis because it is not limited by assumptions of normally-distributed data or of homogeneous variances (Zimmerman *et al.*

1985). Because MRPP is not available in most statistical packages, we conducted our analyses in Microsoft Excel 2007 using the procedure outlined in Mielke and Berry (2001). All statistical tests were evaluated with an alpha of 0.05. Significant variables were further examined for pairwise differences between treatments using the Peritz closure method (Petrondas and Gabriel 1983).

We used regression to examine relationships between quadrat-level straw mulch cover and seeded grass cover for SEEDMULCH plots, and between quadrat-level seeded grass cover and native and exotic plant cover for SEED and SEEDMULCH plots. These analyses were conducted using PROC GLIMMIX in SAS 9.2. All cover variables were beta transformed prior to analyses to improve the distribution and homoscedasticity of residuals (Smithson and Verkuilen 2006).

The seeded species *E. elymoides* and *E. trachycaulus* are common throughout Boulder County. Unfortunately, there was no way for us to reliably distinguish between plants arising as a result of the Fourmile seeding treatments versus plants regenerating naturally from seed or surviving belowground organs. For the sake of consistency, we attribute all occurrences of these species to the seeding treatments in the analyses that follow. While this will not impact the interpretation of MRPP tests that compare response variables across treatments (because *E. elymoides* cover in SEED and SEEDMULCH plots is compared to that found in UNBURN and BURN plots), it may result in an overestimate of the seeded grass values used in the regressions, because these analyses solely use data from SEED and SEEDMULCH plots.

Results and discussion

Similarity of site conditions

Because postfire seeding and mulching treatments were so pervasive along moderately and severely burned public roads, we were only able to locate and measure five plots within the fire perimeter that were not treated in any way (BURN plots; Table 2; Figure 1). Additionally, we located and measured 11 SEED plots, 9 SEEDMULCH plots, and 14 UNBURN plots.

Plots within the four treatments appear to be similar in their environmental conditions (Table 3). Slopes of SEEDMULCH plots were on average 10° greater than those in UNBURN plots; otherwise, slope did not differ among treatments. Furthermore, the treatments did not differ in aspect (expressed as degrees from south), prefire overstory density, or prefire overstory basal area.

Seeded grass establishment and growth

Not surprisingly, total seeded grass abundance and cover were greater in areas that were seeded than in those that were not (Figure 4). However, these measures did not differ between SEED and SEEDMULCH plots, with seeded grasses present in 74% of 1-m² quadrats and totaling to 2.9% cover, on average.

The exotic annual cereal grass *A. sativa* was by far the most successful of the four grass species seeded in the Fourmile Canyon Fire. Cover for this species averaged 2.7% in SEED and SEEDMULCH plots and accounted for nearly 90% of total seeded grass cover (Figure 4). *A. sativa* occurred in 70% of SEED and SEEDMULCH quadrats. As with total seeded grass abundance and cover, *A. sativa* abundance and cover were not statistically different between SEED and SEEDMULCH plots (Figure 4).

Of the three native perennial species seeded in the Fourmile Canyon Fire, *E. elymoides* was also regularly encountered; however, this species is very common in Boulder County, and it

is likely that many of its occurrences in our plots are from natural regeneration. This is exemplified by the fact that *E. elymoides* cover and abundance in UNBURN and BURN plots did not differ from values observed in SEED and SEEDMULCH plots. In contrast, *E. trachycaulus* was rarely encountered, and *P. secunda* was not encountered at all. It could be that *E. trachycaulus* and *P. secunda* were more common in our plots but were too immature to be identified. We anticipate that these three perennial grass species will continue to increase in cover in seeded areas in subsequent years.

Scanty seeded grass establishment in the first postfire year has been reported by others working in Colorado Front Range *P. ponderosa* forests. For example, Wagenbrenner *et al.* (2006) reported that seeded grass germination was poor one year following the 2000 Bobcat Gulch Fire, resulting in no difference in total plant cover between seeded and unseeded areas. Similarly, Rough (2007) also did not observe any first-year differences in total plant cover between seeded and unseeded portions of the 2002 Hayman Fire. Seed movement due to steep terrain and gravelly soils, as well as relatively low levels of precipitation even in average years, may all contribute to the apparent difficulty in establishing seeded grasses in burned Front Range forests.

Our finding that mulching treatments did not facilitate seeded grass establishment and/or growth in the first postfire year is also consistent with other studies (Badia and Marti 2000; Kruse et al 2004; Rough 2007). In the case of the Fourmile Canyon Fire, this is likely due to the low cover of mulch within the mulched areas. Though mulching treatments were intended to achieve 50-75% mulch cover, it rarely exceeded 25% in any quadrat, and averaged only 6.8% across all SEEDMULCH plots. However, the weak but positive relationship between total

seeded grass cover and straw mulch cover in SEEDMULCH quadrats suggests that high levels of mulch may indeed facilitate seeded grass establishment and growth (Figure 5).

Impacts of seed and seed-and-mulch treatments on exotic plants

Fire benefits many exotic plant species by creating favorable habitats for germination, establishment and growth (D'Antonio 2000; Zouhar 2008; Fornwalt et al. 2010), particularly in areas like Boulder County, where a long history of human disturbance has resulted in a considerable exotic plant community. Including the seeded species A. sativa, we identified 29 species not native to North America, accounting for 16% of all species identified (Appendix 1). Eighteen of these are forbs and eleven are graminoids. Eight of the exotic species classified as noxious weeds by the state of Colorado: Bromus tectorum (cheatgrass), Carduus nutans (musk thistle), Cirsium arvense (Canada thistle), Convolvulus arvensis (field bindweed), Euphorbia esula (leafy spurge), Euphorbia myrsinites (myrtle spurge), Linaria vulgaris (butter and eggs), and Verbascum thapsus (common mullein). Excluding A. sativa, B. tectorum and Poa compressa (Canada bluegrass) were the most widespread exotic species. Neither the occurrence nor the cover of these species differed statistically among the four treatments. Across all treatments, B. tectorum occurred in 48% of plots and 18% of quadrats; cover averaged 1.3% and accounted for 25% of total exotic cover. P. compressa occurred in 68% of plots and 11% of quadrats; with an average cover of 0.9%, it accounted for 16% of total exotic cover.

Furthermore, we found that neither the Fourmile Canyon Fire, nor the seed and seed plus mulch treatments, have had an impact on total exotic richness or cover in the first postfire year (Figure 6). Excluding *A. sativa* from analyses reduces average exotic cover from 5.4% to 4.0%, but does not otherwise influence our findings. Additionally, regressing total seeded grass cover

versus total exotic cover (excluding *A. sativa*) for SEED and SEEDMULCH plots revealed no relationship between the two variables (Figure 7).

Research is increasingly demonstrating that seeding treatments are ineffective at controlling exotics for all but the highest levels of seeded grass cover (Schoennagel and Waller 1999; Keeley 2004; Stella *et al.* 2010). In fact, Kruse *et al.* (2004) found that both mulching and seeding treatments actually increased exotics following the Megram Fire, California, likely due to contaminated materials; contaminated straw also was likely responsible for the spread of *B. tectorum* into previously uninvaded portions of the Hayman Fire, Colorado (Chong *et al.* 2003; Fornwalt *et al.* 2010). *B. tectorum* - contaminated straw and seed were used on the Fourmile Fire as well (C. DeLeo personal communication), and while our results did not show an increase in *B. tectorum* occurrence or cover due to treatments, it is possible that an increase may be seen in future years. The aggressive nature of this and other exotic species, and their potential to alter ecosystem processes and functions, necessitates continued monitoring within the burn.

Effects of seed and seed-and-mulch treatments on native plant recovery

We identified 154 native understory species across the 39 plots (Appendix 1). Of these, 29 were short-lived forbs, 82 were long-lived forbs, 24 were graminoids, and 19 were shrubs. Also present were the trees *Pinus ponderosa* (ponderosa pine), *Pseudotsuga menziesii* (Douglas-fir), *Populus tremuloides* (aspen), and *Juniperus scopulorum* (Rocky Mountain juniper).

While the Fourmile Canyon Fire appears to have had some impact on total native richness and cover and on native richness and cover within functional groups, the seed and seed plus mulch treatments have had little additional effect at this point in time (Figures 8, 9). These findings are irrespective of whether *E. elymoides* and *E. trachycaulus* are included in analyses.

However, the negative relationship between seeded grass cover and total native cover (excluding *E. elymoides* and *E. trachycaulus*) in SEED and SEEDMULCH was significant (Figure 10), suggesting that native species are potentially being suppressed at the highest levels of seeded grass establishment. Others have also found that low levels of seeded grass cover did not impact native species in fire-adapted ecosystems (Fornwalt 2009; Kruse *et al.* 2004), while high levels of seeded grass cover decreased native plant establishment and growth (Sexton 1998; Schoennagel and Waller 1999; Keeley 2004).

Conclusions

Our results provide Boulder County Parks and Open Space with scientific data on the effectiveness of postfire seeding and seeding plus mulching treatments at meeting treatment objectives in the first year following application. We found that the seeding treatments conducted within the Fourmile Canyon Fire, both alone and in combination with mulching, appear to have had no impact on exotic plants during the first postfire year, probably because seeded grass and mulch cover were generally low. Fortunately, the native plant community also appears to be largely unaffected by the treatments at this point in time. In view of the considerable cost of postfire rehabilitation activities, it is important that future work be conducted on the effectiveness and the ecological impacts of these treatments over the short and long-term.

Acknowledgements

Thanks to Stephanie Asherin for conducting the botany surveys, and to Claire DeLeo and Erica Christensen for plot selection guidance. Funding was provided by the Rocky Mountain Research Station and Boulder County Parks and Open Space.

References

- Badia D and Marti C. 2000. Seeding and mulching treatments as conservation measures of two
 burned soils in the Central Ebro Valley, NE Spain. Arid Soil Research and Rehabilitation
 13: 219-232.
- Beyers JL. 2004. Postfire seeding for erosion control: effectiveness and impacts on native plant communities. Conservation Biology 18: 947-956.
- Binkley D, Bird S, Ryan MG, and Rhoades CC. 2003. Impact of wood chips on forest soil temperature, moisture, and nitrogen supply. Report to Interior West Center for the Innovative Use of Small Diameter Wood.
- Chong G, Stohlgren T, Crosier C et al. 2003. Key invasive nonnative plants. Pp. 244-249 in
 'Hayman Fire Case Study' (Ed RT Graham). General Technical Report RMRS-GTR114. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO.
- D'Antonio CM. 2000. Fire, plant invasions, and global changes. Pp. 65-93 in 'Invasive species in a changing world' (Eds HA Mooney and RJ Hobbs). Island Press, Covelo, CA.
- Flora of North America Editorial Committee. 1993+. Flora of North America North of Mexico. Oxford University Press, New York, New York.
- Fornwalt PJ. 2009. Lessons from the Hayman Fire: forest understory responses to the scarifyand-seed postfire rehabilitation treatment. Fire Management Today 69: 38-43.
- Fornwalt PJ, Kaufmann MR, and Stohlgren TJ. 2010. Impacts of mixed severity wildfire on exotic plants in the Colorado Front Range. Biological Invasions 12: 2683-2695.
- Fourmile Emergency Stabilization Team. 2010. Fourmile Canyon Fire emergency stabilization plan. Available online at www.bouldercounty.org/find/library/environment/fest4mileburnedareareport.pdf.

- Graham R., Finney M, McHugh C, Cohen J, Stratton R, Bradshaw L, Nikolov N, and Calkin D.
 2011. Fourmile Canyon Fire Preliminary Findings. USDA Forest Service, Rocky
 Mountain Research Station, Fort Collins, CO. Available online at
 www.fs.fed.us/rmrs/docs/home/fourmile.pdf.
- Keeley JE. 2004. Ecological impacts of wheat seeding after a Sierra Nevada wildfire. International Journal of Wildland Fire 13: 73–78.
- Kruse R, Bend E, and Bierzychudek P. 2004. Native plant regeneration and introduction of nonnatives following post-fire rehabilitation with straw mulch and barley seeding. Forest Ecology and Management 196: 299-310.
- Massman WJ, Frank JM, Jimenez-Esquilin AE, Stromberger ME, and Shepperd WD. 2006. Long term consequences of a controlled slash burn and slash mastication to soil moisture and CO₂ at a southern Colorado site. 27th Conference on Agricultural and Forest Meteorology. American Meteorological Society, Boston, MA.
- Mielke PW Jr, Berry KJ. 2001. Permutation methods: A distance function approach. Springer, New York, NY.
- Miller EM, and Seastedt TR. 2009. Impacts of woodchip amendments and soil nutrient availability on understory vegetation establishment following thinning of a ponderosa pine forest. Forest Ecology and Management 258: 263-272.
- Parsons A, Robichaud PR, Lewis SA, Napper C, and Clark JT. 2010. Field guide for mapping post-fire soil burn severity. General Technical Report RMRS-GTR-243. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO.

- Peppin DL, Fulé PZ, Sieg CH, Beyers JL, Hunter ME, and Robichaud PR. 2011. Recent trends in post-wildfire seeding in western US forests: costs and seed mixes. International Journal of Wildland Fire 20: 702-708.
- Perry LG, Blumenthal DM, Monaco TA, Paschke MW, and Redente EF. 2010. Immobilizing nitrogen to control plant invasion. Oecologia 163:13-24.
- Petrondas DA and Gabriel KR. 1983. Multiple comparisons by rerandomization tests. Journal of the American Statistical Association 78: 949-957.
- Robichaud PR, Beyers JL, and Neary DG. 2000. Evaluating the effectiveness of postfire rehabilitation treatments. General Technical Report RMRS-GTR-63. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO.
- Robichaud PR, Ashmun LE, and Sims BD. 2010. Post-fire treatment effectiveness for hillslope stabilization. General Technical Report RMRS-GTR-240. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO.
- Rough D. 2007. Effectiveness of rehabilitation treatments in reducing post-fire erosion after the Hayman and Schoonover Fires, Colorado Front Range. Master's Thesis, Colorado State University, Fort Collins, CO.
- Sexton TO. 1998. Ecological effects of post-wildfire management activities (salvage-logging and grass-seeding) on vegetation composition, diversity, biomass, and growth and survival of *Pinus ponderosa* and *Purshia tridentata*. Master's Thesis, Oregon State University, Corvallis, OR.
- Schoennagel TL and Waller DM. 1999. Understory responses to fire and artificial seeding in an eastern Cascades *Abies grandis* forest, USA. Canadian Journal of Forest Research 29: 1393–1401.

- Smithson M and Verkuilen J. 2006. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychological Methods 11: 54–71.
- Stella KA, Sieg CH, and Fulé PZ. 2010. Minimal effectiveness of native and non-native seeding following three high-severity wildfires. International Journal of Wildland Fire 19: 746-758.
- USDA NRCS. 2011. The PLANTS Database. USDA National Plant Data Center, Baton Rouge, Louisiana. Available online at <u>http://www.plants.usda.gov</u>.
- USDA NRCS. 2008. Soil Survey of Boulder County Area, Colorado. Available online at http://soildatamart.nrcs.usda.gov/manuscripts/CO643/0/Boulder%20CO643.pdf .
- Wagenbrenner JW, MacDonald LH, and Rough D. 2006. Effectiveness of three post-fire rehabilitation treatments in the Colorado Front Range. Hydrological Processes 20: 2989– 3006.
- Zimmerman GM, Goetz H, and Mielke PW Jr. 1985. Use of an improved statistical method for group comparisons to study effects of prairie fire. Ecology 66: 606-611.
- Zink TA and Allen MF. 1998. The effects of organic amendments on the restoration of a disturbed coastal sage scrub habitat. Restoration Ecology 6: 52-58.
- Zouhar K, Smith JK, Sutherland S, and Brooks ML. 2008. Wildland fire in ecosystems: fire and nonnative invasive plants. General Technical Report RMRS-GTR-42(6). USDA Forest Service, Rocky Mountain Research Station, Odgen, UT.

Table 1. Seed mix used in the Fourmile Canyon Fire.

Species	% of mix	Seeds m ⁻² (Seeds ft ⁻²)
Avena sativa (oats)	10	48 (5)
<i>Elymus elymoides</i> (bottlebrush squirreltail)	14	75 (7)
<i>Elymus trachycaulus</i> 'First Strike' ('First Strike' slender wheatgrass)	68	366 (34)
<i>Poa secunda</i> 'UP Colorado Plateau' ('UP Colorado Plateau' Sandberg's bluegrass)	18	97 (9)
Total	100	587 (55)

Table 2. Number of unburned (UNBURN), burned only (BURN), burned and seeded (SEED),

and burned, seeded, and mulched (SEEDMULCH) plots established within and surrounding the

Fourrmile Canyon Fire.

Fire severity	UNBURN	BURN	SEED	SEEDMULCH
Unburned	14	0	0	0
Moderate severity	0	3	5	4
High severity	0	2	7	5
Total	14	5	12	9

Table 3. Attributes of unburned (UNBURN), burned only (BURN), burned and seeded (SEED), and burned, seeded, and mulched (SEEDMULCH) plots established within and surrounding the Fourmile Canyon Fire. Values are means \pm standard errors. Values followed by different letters for an attribute indicate significant differences among treatments.

	UNBURN	BURN	SEED	SEEDMULCH
Aspect (degrees from south)	63.4 ± 10.0	79.6 ± 27.9	61.0 ± 15.6	40.2 ± 12.8
Slope (degrees)	10.9 ± 2.4 a	$10.9 \pm 2.4 \text{ ab}$	$13.3 \pm 2.0 \text{ ab}$	$20.5\pm2.2~\mathrm{b}$
Prefire overstory density (trees ha ⁻¹)	842.9 ± 322.0	620.0 ± 139.3	408.0 ± 101.0	600.0 ± 150.0
Prefire overstory basal area $(m^2 ha^{-1})$	16.0 ± 2.9	14.4 ± 3.6	9.8 ± 3.4	10.6 ± 4.4

Figure 1. Locations of the 40 unburned, burned only, burned and seeded, and burned, seeded, and mulched plots established within and surrounding the Fourmile Fire.

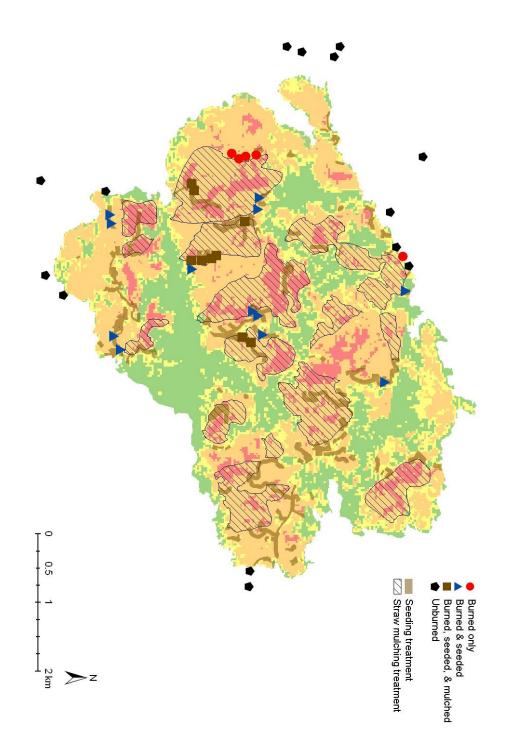


Figure 2. (a) Seeding and (b) mulching treatments were applied to moderately and severely burned portions of the Fourmile Canyon Fire in spring 2011. Photos courtesy of Wildlands Restoration Volunteers.

(a) Seeding treatments (photo by Linard Cimermanis)

(b) Mulching treatments (photographer unknown)

Figure 3. Schematic diagram illustrating the sampling design for all plots. Plots were 100-m^2 in size (~1076-ft²), with the plot's long axis parallel to the road. The understory plant community in each plot was characterized by estimating cover for each vascular understory plant species in five 1-m^2 (~11-ft²) quadrats. The cover of abiotic forest floor components including litter, wood, mulch, ash, and bare soil was estimated in the quadrats as well. The presence of all additional species within the larger 100-m^2 plot was also noted.

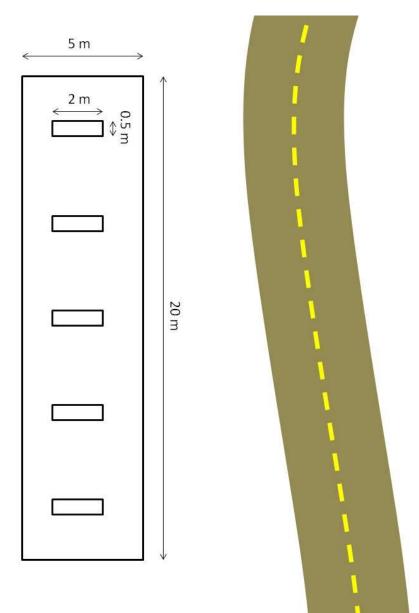
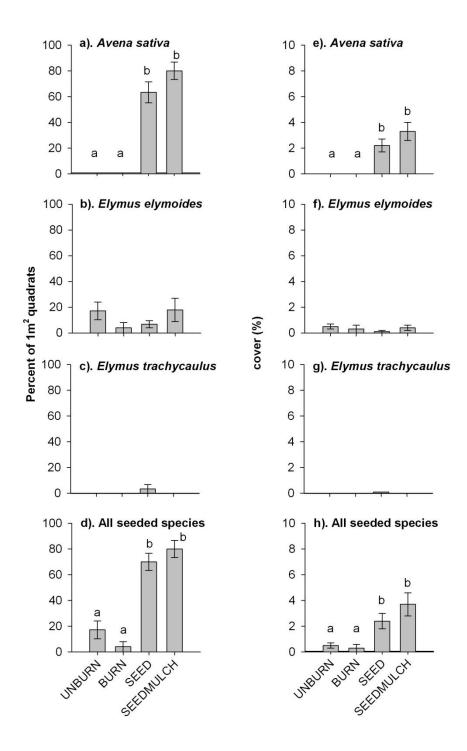



Figure 4. Mean frequency and cover (\pm standard error) of seeded grasses, by treatment. Values followed by different letters for an attribute indicate significant differences among treatments. *Poa secunda* is not shown because it was never encountered in our plots.

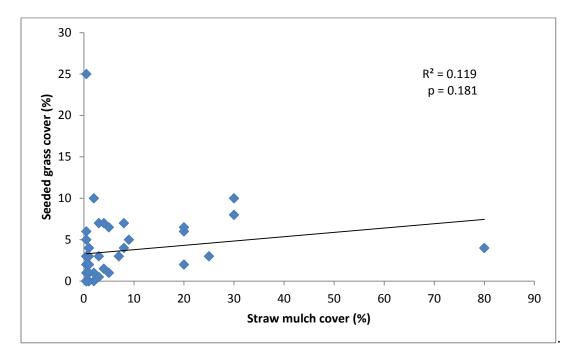


Figure 5. Cover of straw mulch versus total seeded grass cover in SEEDMULCH quadrats.

Figure 6. Total richness and cover (\pm standard error) for exotic species. There were no significant differences among treatments. *A. sativa* is included in exotic species values; removing this species from changes values somewhat but does not change significances.

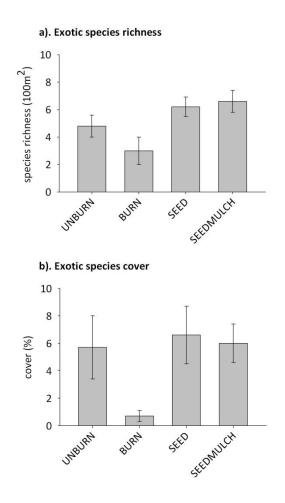


Figure 7. Total seeded grass cover versus total exotic cover in SEED and SEEDMULCH plots. Total exotic cover excludes *Avena sativa*, the seeded exotic grass. Both SEED and SEEDMULCH data are shown together since neither seeded grass cover nor total exotic cover differed between the two treatments.

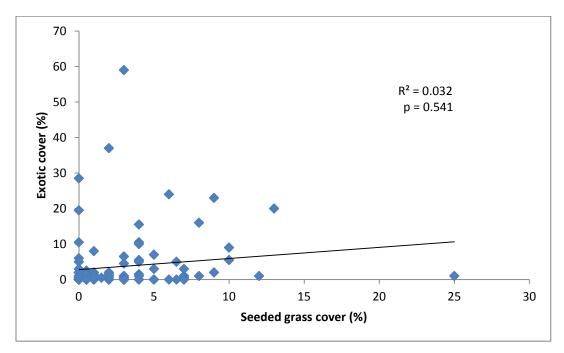
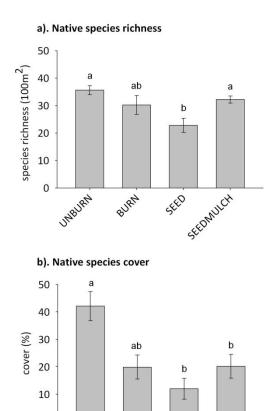



Figure 8. Total richness and cover (\pm standard error) for native species, by treatment. Values followed by different letters for an attribute indicate significant differences among treatments. *E. elymoides* and *E. trachycaulus* are included in native species values; removing these species from analyses changes values somewhat but does not change significances.

SEDMUCH

SEED

BURN

0

UNBURN

Figure 9. Total richness and cover (± standard error) for native species, by treatment and functional group. Values followed by different letters indicate significant differences among treatments. *E. elymoides* and *E. trachycaulus* are included in graminoid values; removing these species from analyses changes values somewhat but does not change significances.

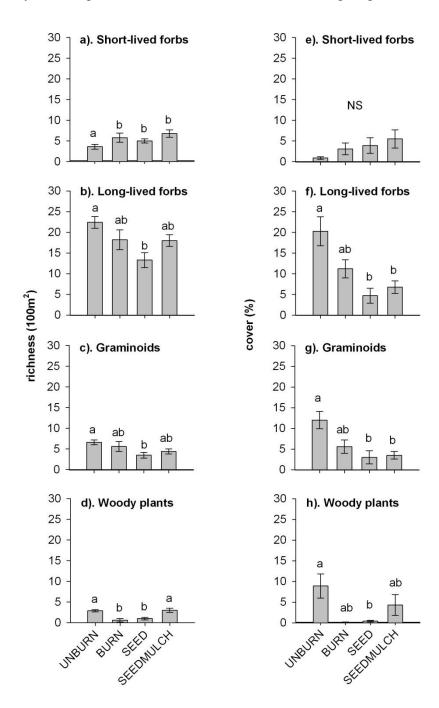


Figure 10. Total seeded grass cover versus total native cover in SEED and SEEDMULCH plots. Total native cover excludes *Elymus elymoides* and *E. trachycaulus*, the seeded native grasses that were encountered in this study. Both SEED and SEEDMULCH data are shown together since neither seeded grass cover nor total exotic cover differed between the two treatments.

Appendix 1. Short-lived forb, long-lived forb, graminoid, and shrub species encountered in the 40 plots.

Family	Species	Nativity	Habit
Agavaceae	Yucca glauca (soapweed yucca)	Native	Woody plant
Anacardiaceae	Rhus trilobata (skunkbush sumac)	Native	Woody plant
Apiaceae	Aletes acaulis (stemless Indian parsley)	Native	Long-lived forb
Apiaceae	Cymopterus (spring parsley)	Native	Long-lived forb
Apiaceae	Harbouria trachypleura (whiskbroom	Native	Long-lived forb
•	parsley)		0
Apiaceae	Pseudocymopterus montanus (alpine false	Native	Long-lived forb
	springparsley)		
Apocynaceae	Apocynum androsaemifolium (spreading	Native	Long-lived forb
	dogbane)		-
Asteraceae	Achillea millefolium (common yarrow)	Native	Long-lived fort
Asteraceae	Agoseris glauca (pale false dandelion)	Native	Long-lived fort
Asteraceae	Ambrosia artemisiifolia (annual ragweed)	Native	Short-lived fort
Asteraceae	Antennaria (pussytoes)	Native	Long-lived fort
Asteraceae	Antennaria parvifolia (small-leaf pussytoes)	Native	Long-lived fort
Asteraceae	Antennaria rosea (rosy pussytoes)	Native	Long-lived fort
Asteraceae	Arnica cordifolia (heartleaf arnica)	Native	Long-lived fort
Asteraceae	Artemisia campestris (field sagewort)	Native	Short-lived fort
Asteraceae	Artemisia frigida (fringed sage)	Native	Long-lived fort
Asteraceae	Artemisia ludoviciana (white sagebrush)	Native	Long-lived fort
Asteraceae	Bahia dissecta (ragleaf bahia)	Native	Short-lived for
Asteraceae	Carduus nutans (musk thistle)	Exotic	Short-lived for
Asteraceae	Cirsium (thistle)	Native or	Short- or Long-
		Exotic	lived forb
Asteraceae	Cirsium arvense (Canada thistle)	Exotic	Long-lived forb
Asteraceae	Erigeron compositus (cutleaf daisy)	Native	Long-lived fort
Asteraceae	Erigeron flagellaris (trailing fleabane)	Native	Short-lived for
Asteraceae	Erigeron speciosus (aspen fleabane)	Native	Long-lived fort
Asteraceae	Erigeron subtrinervis (threenerve fleabane)	Native	Long-lived fort
Asteraceae	Gaillardia aristata (blanketflower)	Native	Long-lived fort
Asteraceae	Grindelia subalpina (subalpine gumweed)	Native	Short-lived fort
Asteraceae	Helianthus pumilus (little sunflower)	Native	Long-lived fort
Asteraceae	Heterotheca villosa (hairy false goldenaster)	Native	Long-lived fort
Asteraceae	Lactuca serriola (prickly lettuce)	Exotic	Short-lived fort
Asteraceae	Liatris punctata (dotted blazing star)	Native	Long-lived fort
Asteraceae	Packera fendleri (Fendler's ragwort)	Native	Long-lived fort
Asteraceae	Senecio crassulus (thickleaf ragwort)	Native	Long-lived fort
Asteraceae	Senecio integerrimus (lambstongue ragwort)	Native	Short-lived fort
Asteraceae	Solidago (goldenrod)	Native	Long-lived fort
Asteraceae	<i>Solidago multiradiata</i> (Rocky Mountain goldenrod)	Native	Long-lived fort

Family	Species	Nativity	Habit
Asteraceae	Taraxacum officinale (common dandelion)	Exotic	Long-lived forb
Asteraceae	Townsendia hookeri (Hooker's Townsend daisy)	Native	Long-lived forb
Asteraceae	Tragopogon dubius (yellow salsify)	Exotic	Short-lived forb
Berberidaceae	Mahonia repens (creeping barberry)	Native	Woody plant
Boraginaceae	Cryptantha virgata (miner's candle)	Native	Short-lived forb
Boraginaceae	Lappula occidentalis (flatspine stickseed)	Native	Short-lived forb
Boraginaceae	<i>Lithospermum multiflorum</i> (many flowered stoneseed)	Native	Long-lived forb
Boraginaceae	Mertensia lanceolata (prairie bluebells)	Native	Long-lived forb
Brassicaceae	Alyssum alyssoides (pale madwort)	Exotic	Short-lived forb
Brassicaceae	Alyssum simplex (alyssum)	Exotic	Short-lived forb
Brassicaceae	Arabis (rockcress)	Native	Short- or Long- lived forb
Brassicaceae	Arabis fendleri (Fendler's rockcress)	Native	Long-lived forb
Brassicaceae	Camelina microcarpa (littlepod false flax)	Exotic	Short-lived forb
Brassicaceae	Descurainia pinnata (western tansymustard)	Native	Short-lived forb
Brassicaceae	Descurainia sophia (herb sophia)	Exotic	Short-lived forb
Brassicaceae	Draba streptocarpa (pretty draba)	Native	Long-lived forb
Brassicaceae	Erysimum capitatum (sanddune wallflower)	Native	Short-lived forb
Brassicaceae	Lesquerella montana (mountain bladderpod)	Native	Long-lived forb
Brassicaceae	Noccaea montana (alpine pennycress)	Native	Long-lived forb
Brassicaceae	Sisymbrium altissimum (tall tumblemustard)	Exotic	Short-lived forb
Brassicaceae	Thlaspi arvense (field pennycress)	Exotic	Short-lived forb
Cactaceae	Opuntia polyacantha (plains pricklypear)	Native	Woody plant
Cactaceae	Pediocactus simpsonii (mountain ball cactus)	Native	Woody plant
Campanulaceae	Campanula rotundifolia (bluebell bellflower)	Native	Long-lived forb
Caprifoliaceae	Symphoricarpos albus (common snowberry)	Native	Woody plant
Caryophyllaceae	Cerastium arvense (field chickweed)	Native	Long-lived forb
Caryophyllaceae	Silene antirrhina (sleepy catchfly)	Native	Short-lived forb
Caryophyllaceae	Silene drummondii (Drummond's campion)	Native	Long-lived forb
Caryophyllaceae	Silene scouleri (simple campion)	Native	Long-lived forb
Chenopodiaceae	Chenopodium berlandieri (pitseed goosefoot)	Native	Short-lived forb
Chenopodiaceae	Chenopodium capitatum (blite goosefoot)	Native	Short-lived forb
Chenopodiaceae	Chenopodium fremontii (Fremont's goosefoot)	Native	Short-lived forb
Chenopodiaceae	<i>Chenopodium leptophyllum</i> (narrowleaf goosefoot)	Native	Short-lived forb
Chenopodiaceae	Salsola tragus (prickly Russian thistle)	Exotic	Short-lived forb
Commelinaceae	Tradescantia occidentalis (prairie spiderwort)	Native	Long-lived forb
Convolvulaceae	Convolvulus arvensis (field bindweed)	Exotic	Long-lived forb
Crassulaceae	Sedum lanceolatum (spearleaf stonecrop)	Native	Long-lived forb
Cupressaceae	Juniperus communis (common juniper)	Native	Woody plant
Cyperaceae	Carex (sedge)	Native	Graminoid
Cyperaceae	Carex inops (long-stolon sedge)	Native	Graminoid
Cyperaceae	Carex petasata (Liddon sedge)	Native	Graminoid

Family	Species	Nativity	Habit
Cyperaceae	Carex rossii (Ross' sedge)	Native	Graminoid
Cyperaceae	Carex siccata (dryspike sedge)	Native	Graminoid
Dryopteridaceae	Cystopteris fragilis (brittle bladderfern)	Native	Long-lived forb
Elaeagnaceae	Shepherdia canadensis (russet buffaloberry)	Native	Woody plant
Ericaceae	Arctostaphylos uva-ursi (kinnikinnick)	Native	Woody plant
Euphorbiaceae	Euphorbia brachycera (horned spurge)	Native	Long-lived forb
Euphorbiaceae	Euphorbia esula (leafy spurge)	Exotic	Long-lived forb
Euphorbiaceae	Euphorbia myrsinites (myrtle spurge)	Exotic	Long-lived forb
Fabaceae	Astragalus (milkvetch)	Native	Long-lived forb
Fabaceae	Astragalus laxmannii (Laxmann's milkvetch)	Native	Long-lived forb
Fabaceae	Astragalus parryi (Parry's milkvetch)	Native	Long-lived forb
Fabaceae	Astragalus shortianus (Short's milkvetch)	Native	Long-lived forb
Fabaceae	Astragalus tenellus (looseflower milkvetch)	Native	Long-lived forb
Fabaceae	Lupinus argenteus (silvery lupine)	Native	Long-lived forb
Fabaceae	Melilotus officinalis (yellow sweetclover)	Exotic	Short-lived forb
Fabaceae	Oxytropis deflexa (nodding locoweed)	Native	Long-lived forb
Fabaceae	Oxytropis lambertii (purple locoweed)	Native	Long-lived forb
Fabaceae	Oxytropis multiceps (Nuttall's oxytrope)	Native	Long-lived forb
Fabaceae	<i>Thermopsis divaricarpa</i> (spreadfruit goldenbanner)	Native	Long-lived forb
Fumariaceae	Corydalis aurea (golden smoke)	Native	Short-lived forb
Gentianaceae	Frasera speciosa (monument plant)	Native	Long-lived forb
Geraniaceae	<i>Geranium caespitosum</i> (pineywoods geranium)	Native	Long-lived forb
Grossulariaceae	Ribes (currant)	Native	Woody plant
Grossulariaceae	Ribes cereum (wax currant)	Native	Woody plant
Hydrangeaceae	Jamesia americana (wax flower)	Native	Woody plant
Hydrophyllaceae	Hydrophyllum fendleri (Fendler's waterleaf)	Native	Long-lived forb
Hydrophyllaceae	Phacelia alba (white phacelia)	Native	Short-lived forb
Hydrophyllaceae	Phacelia heterophylla (varileaf phacelia)	Native	Short-lived forb
Lamiaceae	Monarda fistulosa (wild bergamot)	Native	Long-lived forb
Lamiaceae	Scutellaria brittonii (Britton's skullcap)	Native	Long-lived forb
Liliaceae	Allium cernuum (nodding onion)	Native	Long-lived forb
Liliaceae	Allium textile (textile onion)	Native	Long-lived forb
Liliaceae	<i>Calochortus gunnisonii</i> (Gunnison's mariposa lily)	Native	Long-lived forb
Liliaceae	<i>Maianthemum stellatum</i> (starry false lily of the valley)	Native	Long-lived forb
Linaceae	Linum lewisii (Lewis flax)	Native	Long-lived forb
Loasaceae	<i>Mentzelia dispersa</i> (bushy blazingstar)	Native	Short-lived forb
Loasaceae	Mentzelia multiflora (Adonis blazingstar)	Native	Short-lived forb
Onagraceae	<i>Gaura coccinea</i> (scarlet beeblossom)	Native	Long-lived forb
Onagraceae	Gayophytum diffusum (spreading groundsmoke)	Native	Short-lived forb
Onagraceae	<i>Oenothera</i> (evening primrose)	Native	

Family	Species	Nativity	Habit
Papaveraceae	Argemone hispida (rough pricklypoppy)	Native	Long-lived forb
Poaceae	Achnatherum nelsonii (Columbia needlegrass)	Native	Graminoid
Poaceae	Agropyron/Elymus/Leymus/Pseudoregneria/	Native or	Graminoid
	Thinopyrum (wheatgrass)	exotic	
Poaceae	Avena sativa (common oat)	Exotic	Graminoid
Poaceae	Bouteloua gracilis (blue grama)	Native	Graminoid
Poaceae	Bromus (brome)	Native or	Graminoid
		Exotic	
Poaceae	Bromus arvensis (field brome)	Exotic	Graminoid
Poaceae	Bromus inermis (smooth brome)	Exotic	Graminoid
Poaceae	Bromus lanatipes (woolly brome)	Native	Graminoid
Poaceae	Bromus tectorum (cheatgrass)	Exotic	Graminoid
Poaceae	<i>Calamagrostis purpurascens</i> (purple reedgrass)	Native	Graminoid
Poaceae	Dactylis glomerata (orchardgrass)	Exotic	Graminoid
Poaceae	Danthonia parryi (Parry's oatgrass)	Native	Graminoid
Poaceae	Elymus albicans (Montana wheatgrass)	Native	Graminoid
Poaceae	Elymus elymoides (bottlebrsh squirreltail)	Native	Graminoid
Poaceae	Elymus trachycaulus (slender wheatgrass)	Native	Graminoid
Poaceae	<i>Festuca saximontana</i> (Rocky Mountain fescue)	Native	Graminoid
Poaceae	<i>Hesperostipa comata</i> (needle-and-thread grass)	Native	Graminoid
Poaceae	Koeleria macrantha (prairie Junegrass)	Native	Graminoid
Poaceae	Leucopoa kingii (spike fescue)	Native	Graminoid
Poaceae	Leymus ambiguus (Colorado wildrye)	Native	Graminoid
Poaceae	Muhlenbergia montana (mountain muhly)	Native	Graminoid
Poaceae	Pascopyrum smithii (western wheatgrass)	Native	Graminoid
Poaceae	Phleum pratense (timothy)	Exotic	Graminoid
Poaceae	Poa (bluegrass)	Native or Exotic	Graminoid
Poaceae	Poa compressa (Canada bluegrass)	Exotic	Graminoid
Poaceae	Poa fendleriana (muttongrass)	Native	Graminoid
Poaceae	Poa nemoralis (wood bluegrass)	Native	Graminoid
Poaceae	Poa pratensis (Kentucky bluegrass)	Exotic	Graminoid
Poaceae	Psathyrostachys juncea (Russian wildrye)	Exotic	Graminoid
Poaceae	<i>Pseudoroegneria spicata</i> (bluebunch wheatgrass)	Native	Graminoid
Poaceae	Schizachyrium scoparium (little bluestem)	Native	Graminoid
Poaceae	Secale cereale (cereal rye)	Exotic	Graminoid
Poaceae	<i>Thinopyrum intermedium</i> (intermediate wheatgrass)	Exotic	Graminoid
Polemoniaceae	Aliciella pinnatifida (sticky gilia)	Native	Short-lived forb
Polemoniaceae	<i>Collomia linearis</i> (tiny trumpet)	Native	Short-lived forb
Polemoniaceae	Ipomopsis aggregata (scarlet gilia)	Native	Short-lived forb

Family	Species	Nativity	Habit
Polemoniaceae	Microsteris gracilis (slender phlox)	Native	Short-lived forb
Polemoniaceae	<i>Phlox multiflora</i> (flowery phlox)	Native	Long-lived forb
Polygonaceae	Eriogonum alatum (winged buckwheat)	Native	Long-lived forb
Polygonaceae	<i>Eriogonum flavum</i> (alpine golden buckwheat)	Native	Long-lived forb
Polygonaceae	Eriogonum umbellatum (sulphur-flower	Native	Long-lived forb
	buckwheat)		
Polygonaceae	Polygonum douglasii (Douglas' knotweed)	Native	Short-lived forb
Portulacaceae	Claytonia rosea (western springbeauty)	Native	Long-lived forb
Primulaceae	Androsace septentrionalis (pygmyflower	Native	Short-lived forb
	rockjasmine)		
Ranunculaceae	Delphinium nuttallianum (twolobe larkspur)	Native	Long-lived forb
Ranunculaceae	Pulsatilla patens (pasque flower)	Native	Long-lived forb
Rhamnaceae	Ceanothus fendleri (Fendler's ceanothus)	Native	Woody plant
Rosaceae	Cercocarpus montanus (alderleaf mountain	Native	Woody plant
	mahogany)		
Rosaceae	Physocarpus monogynus (mountain ninebark)	Native	Woody plant
Rosaceae	Potentilla fissa (bigflower cinquefoil)	Native	Long-lived forb
Rosaceae	Potentilla hippiana (woolly cinquefoil)	Native	Long-lived forb
Rosaceae	Potentilla pulcherrima x hippiana (beautiful	Native	Long-lived forb
_	cinquefoil hybrid)		
Rosaceae	Prunus pensylvanica (pin cherry)	Native	Woody plant
Rosaceae	Prunus virginiana (chokecherry)	Native	Woody plant
Rosaceae	Rosa (rose)	Native	Woody plant
Rosaceae	Rubus deliciosus (delicious raspberry)	Native	Woody plant
Rubiaceae	Galium boreale (northern bedstraw)	Native	Long-lived forb
Santalaceae	<i>Comandra umbellata</i> (bastard toadflax)	Native	Long-lived forb
Saxifragaceae	Heuchera parvifolia (littleleaf alumroot)	Native	Long-lived forb
Scrophulariaceae	Castilleja integra (wholeleaf Indian	Native	Long-lived forb
0 1 1 1	paintbrush)	NT /*	T 1, 1, 1, 1
Scrophulariaceae	<i>Castilleja linariifolia</i> (Wyoming Indian	Native	Long-lived forb
Concelerie	paintbrush)	Natire	I and lived forth
Scrophulariaceae	<i>Castilleja miniata</i> (giant red Indian	Native	Long-lived forb
Sanamhulaniaaaaa	paintbrush)	Native	Shout lived forth
Scrophulariaceae	<i>Collinsia parviflora</i> (maiden blue eyed Mary) <i>Linaria vulgaris</i> (butter and eggs)	Exotic	Short-lived forb Long-lived forb
Scrophulariaceae Scrophulariaceae	Penstemon glaber (sawsepal penstemon)	Native	Long-lived forb
Scrophulariaceae	Penstemon virens (Front Range beardtongue)	Native	Long-lived forb
Scrophulariaceae	Scrophularia lanceolata (lanceleaf figwort)	Native	Long-lived forb
Scrophulariaceae	Verbascum thapsus (common mullein)	Exotic	Short-lived forb
Solanaceae	<i>Physalis heterophylla</i> (clammy groundcherry)	Native	Long-lived forb
Solanaceae	Solanum triflorum (cutleaf nightshade)	Native	Short-lived forb
Violaceae	Viola nuttallii (Nuttall's violet)	Native	Long-lived forb
violaceae	viola humanni (Nuttan S violet)	mative	Long-nveu loid