

COMPOST FEASIBILITY STUDY BOULDER COUNTY

February 25, 2025 BOCC Phase I Presentation

AGENDA

- **1** Project Overview & Goals
- 2 Existing System
- **3** Contamination Challenges
- 4 Decision Matrix
- 5 Processor Interviews
- 6 Next Steps

PROJECT OVERVIEW & GOALS

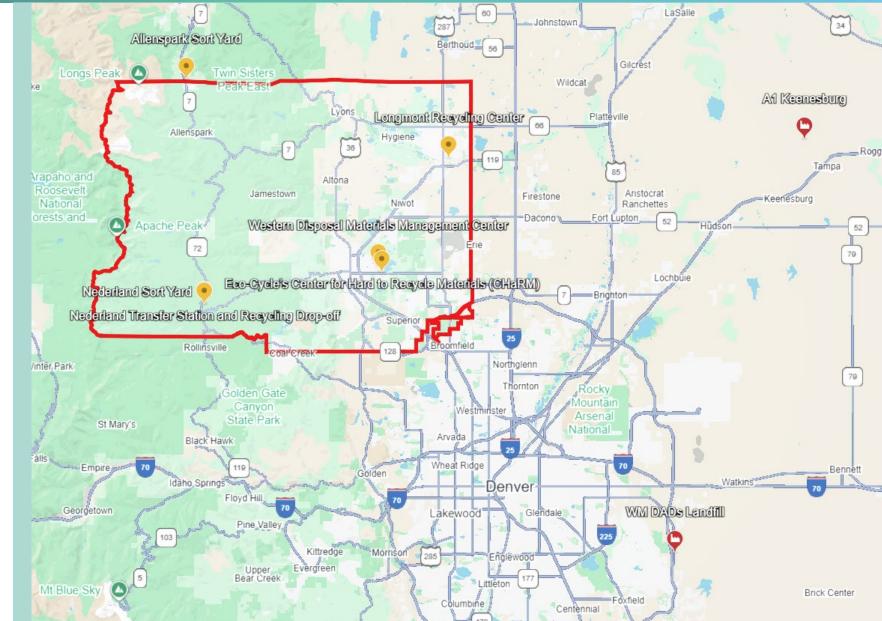
To understand organics processing infrastructure options, financial and operational models, and the overall feasibility of a County organics management facility.

County core value to prioritize environmental ethics and racial equity

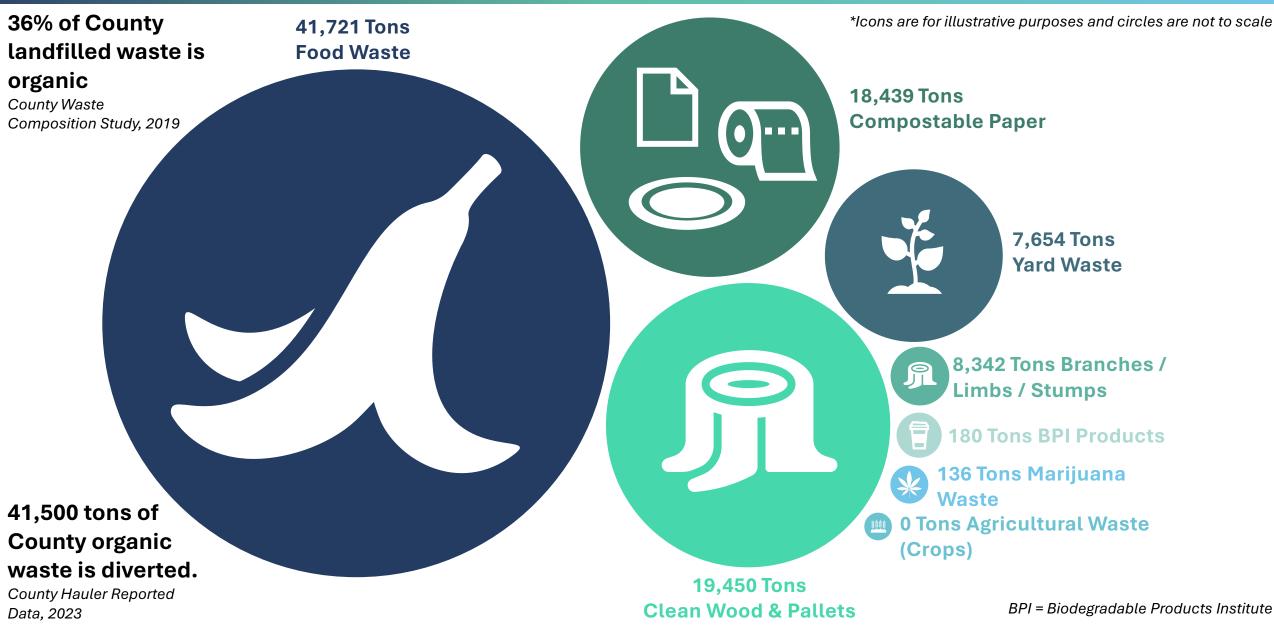
County desire to manage responsibility over County-generated organics (residential and commercial)

Manage end products of soil amendments within the County for a closed loop

Reduce hauling distances to improve sustainable management of organics



EXISTING SYSTEM


EXISTING SYSTEM OVERVIEW

- Boulder County currently relies on A1, a privately owned centralized composting facility to process their organic waste.
- Food and yard waste is collected by a network of private and municipal haulers through Western Disposal
- Organics are hauled to the composting facility in Keenesburg, CO.
- A1 possesses a depackager and employs turned windrow composting.
- The haul distance is approximately
 45-60 miles one way.
- Branches/limbs/stumps managed through a network of community drop off sites

WASTE COMPOSITION OF LANDFILLED ORGANICS

CONTAMINATION CHALLENGES

7

COMPOSTING FACILITY PROCESS

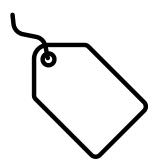
1. Feedstocks

Organic waste is separated from the landfill stream and hauled to the facility.

Collected materials are delivered to a receiving area. 2. Pre-Processing

Contamination is removed from feedstocks through manual and/or mechanical means.

Bulky feedstocks are reduced in size.


3. Active Processing

Feedstock is converted into finished compost through active composting and curing.

4. Post-Processing

Finished compost is screened for product sizing specifications and final contamination removal. 5. End Market

Compost is utilized internally as a cost savings or sold for use.

8

CONTAMINATION CHALLENGES

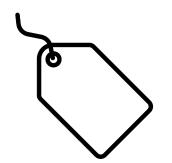
1. Feedstocks

- Indistinguishable products
- Inorganic products contaminate the feedstock

2. Pre-Processing

- Indistinguishable products
- Both inorganic contamination and compostable products are likely landfilled

3. Active Processing



Compostable products rarely break down completely in practice

4. Post-Processing

 Not all contamination fragments are caught through screening

5. End Market

- Fragments remain, lowering the value and application
- Not certifiable as organic
- May contain PFAS

Optic	n	Challenges			
1	Accept compostable products from residential WITHOUT pre-processing	Windblown litterContaminated end product			
2	Accept compostable products from residential WITH pre-processing	 Materials are removed and landfilled Contaminated end product 			
3	Accept only a limited list of compostable products (e.g., coffee filters and paper towels) from residential	 Requires significant education Slightly cleaner, but still contaminated end product 			
4	Do not accept compostable products	 Materials are landfilled 			

For the matrix evaluation, it was assumed that compostable products **would not be accepted** at this facility initially, though the County could be poised to process them in the future as technology improves.

DECISION MATRIX

DECISION MATRIX METHODOLOGY

1 Definitions of infrastructure alternatives

- 2 Identification of County goals and priorities
- **3** Selection of critical screening criteria
- 4 Burns & McDonnell rating of infrastructure alternatives
- 5 County staff prioritization of criteria


CRITICAL CRITERIA

Maturity / Prevalence of Technology

System Resiliency

End Product / Byproducts

Critical Criteria Screening	Existing System Pass / Fail	Centralized Turned Windrow Composting Pass / Fail	Centralized ASP Composting Pass / Fail	Decentralized Composting Pass / Fail	Anaerobic Digestion Pass / Fail	Biochar Pass / Fail	Organics Transfer Station Pass / Fail
Maturity / Prevalence of Technology	Pass	Pass	Pass	Fail	Fail	Fail	Pass
System Resiliency	Fail	Pass	Pass	Pass	Fail	Fail	Pass
End Product / Byproducts	Pass	Pass	Pass	Pass	Pass	Pass	Fail

Failing Alternatives can still Contribute to the Solution

Diversion Siting Operational Financial **Considerations Considerations Considerations Considerations** Acceptable Zoning Classification **Odor Implications Development Costs** Feedstocks Impact of Feedstock **Relative Spatial Noise Implications** Capital Costs Contamination Requirement Impact to Waste Impact to Water Potential for Growth **Operating Costs** Diversion Quality Impact to **Relative Retention** Greenhouse Gas Impact to Air Quality Market Competition Times Emissions

The following would likely fall short of the County's goals on their own:

- Decentralized Composting
- Anaerobic Digestion
- Biochar
- Organics Transfer Station

Centralized composting in the form of

- Turned Windrows
- Aerated Static Piles

may best meet the County's goals through the development of new infrastructure

PROCESSOR INTERVIEW FINDINGS

Table is taken from the Recycling Partnership Recycling Contract Document

INTERVIEWS SUMMARIZED

End Market Analysis

QUESTIONS?

Which Cup is Compostable?

Source: Justin Garrity, Veteran Compost