

2025 Report

Cost-effectiveness of soil amendments for native plant establishment in
highly disturbed uplands in Boulder County.

Prepared By:

**Economic
Restoration
Institute**

restoration strategies for a sustainable economic future

PO Box 1461
Fort Collins, CO 80522

www.EconomicRestoration.org

Report Date: December 01, 2025.

Project Contact:

John Giordanengo
President and Principal
Economic Restoration Institute
john@economicrestoration.org
Fort Collins, CO

1 EXECUTIVE SUMMARY

2 The purpose of this research project was to evaluate the cost-effectiveness of
3 common soil amendments used in restoring upland vegetation following high severity
4 disturbances in the eastern plains of Colorado, such as in pipeline corridors. Soil
5 amendments included low compost (60 cy/ac), high compost (100 cy/ac), PermaMatrix
6 (manufacturer recommended rate), seed only, and Richlawn. The treatments were
7 installed in November 2024, on a pipeline corridor on Erie property, near the regional
8 airport. This site was reclaimed previously, but the site had become dominated by *Kochia*
9 *scoparia* and other non-native weeds.

10 First growing-season results were evaluated in July, 2025. The low compost
11 treatment (60 cy/ac) produced the highest total vegetation cover, and supported 35
12 seedlings per square meter. Most of the seedlings were native grass, primarily *Sporobolus*
13 *cryptandrus*. Most of the total vegetation cover was comprised of the non-native *Kochia*
14 *scoparia*. Considering the high standard deviations in native plant cover across
15 treatments, we do not believe any of the results are statistically significant. There were
16 many confounding variables in the way in which treatments were applied, and we are
17 reluctant to make firm decisions based on just first-season monitoring results. This said,
18 the consistent high number of seedlings in nearly all research plots was a positive
19 response to treatments.

20 AloTerra Restoration Services and the Economic Restoration Institute provided
21 in-kind services (staff time) for this research project, for which we are greatly
22 appreciative. Thank you again for BCPOS's financial support and staff support for this
23 research. The City of Longmont also provided financial support for this research.

24 **ABSTRACT**

25 Establishment of self-sustaining native plant communities is an important goal for
26 many upland ecological restoration projects in Boulder County and elsewhere. While the
27 incorporation of organic matter is often beneficial to plant establishment in disturbed
28 sites, the amount of literature comparing different organic amendment alternatives for
29 upland restoration is highly limited, or it is focused on just one product, such as compost,
30 topsoil, Biotic Earth, etc. In terms of project feasibility, incorporating compost or other
31 soil amendments is often a budgetary constraint on restoration projects.

32 This research project intended to determine the cost-effectiveness of several
33 common soil amendments in the establishment of native vegetation in the short-grass
34 prairie ecoregion of Boulder County, Colorado. The primary hypothesis is that compost,
35 at 60 cubic yards per acre (S-1 treatment), is the most cost-effective approach to restoring
36 highly disturbed upland plant communities in this environmental context. Six treatments
37 were applied, with three replicates per treatment.

38 This project contributes to the needs and interests of Boulder County Parks and
39 Open Space (BCPOS) by determining the most cost-effective means to establishing
40 desirable native plant communities on degraded properties they aim to restore. We
41 believe this research will contribute to furthering scientific knowledge and public
42 education in Colorado, and perhaps in the surrounding states with similar environmental
43 contexts where upland restoration is being performed on degraded grasslands.

44 First-season results, including seedling counts, are not conclusive as-to treatment
45 effect. Several confounding variables were also present, summarized in the discussion.

46 One of those was a high cover of Kochia, a non-native weed. At least two more
47 monitoring seasons may be necessary to derive more complete treatment response.

48 *Key Words:* ecological restoration, soil amendments, compost, prairie restoration.

49

50 **INTRODUCTION**

51 Establishment of native vegetation on highly disturbed sites of the eastern plains
52 of Colorado is limited by many factors (e.g., low precipitation; extreme temperatures;
53 soils with low organic matter, high salinity, or other soil chemistry and biological
54 constraints; competitive pressure from non-native plant; and so on.) This research project
55 was established to help fill a gap in the effectiveness of different soil amendments in
56 vegetation establishment in this context, and contributes to the needs of BCPOS in
57 several ways. The research site occurs on a reclaimed water pipeline in the Town of Erie,
58 where previous reclamation efforts failed to produce a desirable stand of native
59 vegetation. Prior to installation of research plots, the site was dominated by non-native
60 plants (i.e., 90% or more of the vegetation cover comprised of non-native plants).

61 Details of the initial revegetation efforts are not known. However, from field
62 observations, it appears that topsoil was not salvaged and/or replaced on the reclaimed
63 soil surface prior to initial revegetation efforts. Lack of weed management pre- and post-
64 revegetation efforts is likely another cause of failure. We did not encounter any residual
65 mulch on the site during baseline assessments. We did encounter furrow rows, indicating
66 that the site was drill seeded. However, we are unaware of the seed mix used, or any soil
67 amendments that may have been applied.

68 Boulder County is engaged in a wide range of restoration projects in their land
69 management system, and desires to determine the most cost-effective means to restoring
70 native plant communities on degraded properties. We also believe this research will
71 contribute to **furthering scientific knowledge** and public education in Colorado, and
72 perhaps in the surrounding states where upland restoration is being performed in similar
73 arid environmental contexts.

74 The **objective** of this research project is to determine the cost-effectiveness of
75 several common soil amendments in the establishment of native vegetation in the short-
76 grass prairie ecoregion of eastern Colorado. The **null hypothesis** being tested is that there
77 is no difference between the soil amendments being tested. The alternative hypothesis is
78 that a combination of compost (at 60 cubic yards per acre) + 300 lbs/ac of Biosol 7-2-1 is
79 the most cost-effective approach to restoring highly disturbed upland plant communities
80 in this environmental context. In this case, “cost-effective” means that the treatment will
81 produce at least 40% vegetation cover within the first two to three growing seasons
82 following installation of treatments, and support a healthy stand of desirable native
83 vegetation.

84 Several benefits of compost are reported in the literature: a) increased soil
85 moisture retention, b) increased soil porosity, c) increased cation exchange capacity of
86 soils, which increases nutrient capture, and d) increase in beneficial microbes and soil
87 biota. These characteristics aid in the proliferation of the soil microbiome, buffer soil pH,
88 and allows plants to more effectively utilize nutrients (Alexander, R. 2005). Some of
89 these benefits are also provided by other organic amendments, such as pelletized humic
90 acid (i.e., humate), and similar humic contents in Biosol, Richlawn, and other commercial

91 amendments. Other products such as Biotic Earth Black™ and PermaMatrix™ also
92 provide various forms of organic matter, and can include some mycorrhizal fungi and
93 other soil biota found in compost (ECB-VERDYOL, 2024). Biotic Earth Black™ and
94 PermaMatrix™ have a very high C:N ratio (35:1), comprised of 95% sphagnum
95 peatmoss and straw, and often requires high N application rates to offset the high carbon
96 content. To balance this, we added the recommended 500 lbs/ac of 7-2-1 organic
97 fertilizer.

98 The background level of soil organic matter (SOM) in prairie soils of Boulder
99 County can range between 1 and 4%. However, in a restoration setting, with highly
100 disturbed soils, a higher % SOM is often necessary to favor successful establishment of
101 desirable seeded species. Until an adequate native plant community is established, initial
102 SOM volumes will often decline—often times quickly—following ripping, discing, and
103 seeding. Much of the SOM can be volatized into CO₂ in the first few years. For this
104 reason, it is recommended that % SOM be increased above the reference condition, a
105 strategy corroborated by the EPA, which recommends doubling the %SOM for a
106 restoration project (EPA, 2007).

107 Research on the cost-effectiveness of the above soil amendments (tested side-by-
108 side on the same site) is very limited in the U.S., and from the PIs literature search similar
109 research is absent in the eastern plains of Colorado. Research on many soil amendments
110 is often done on just the one amendment in question (Myrowich and Nelsen, 2024), or it
111 is produced by the manufacturer (ECB-VERDYOL, 2024). One study did compare
112 Biotic Earth, ProGranics, and Topsoil in Canada, but did not test compost or other
113 industry standard side by side with those treatments (Hilvers, 2015).

114 From an environmental and economic sustainability standpoint, there is currently
115 a surplus of compost on the Colorado Northern Front Range (Sanders, 2023). If this
116 research does show that compost is a cost-effective amendment for restoring native
117 habitats, this project may also provide evidence for a regional use of a readily available
118 material, which also removes pressure of landfilling organic waste, and the associated
119 environmental impacts, all of which are goals of Boulder County.

120
121

122 **METHODS**

123 Integrated weed management occurred for two growing seasons prior to
124 installation of research plots (e.g., mowing 3-4 times per year + limited application of
125 Milestone™ & Quinstar™ herbicides). Five soil amendments (SA) were evaluated
126 alongside a seed only treatment, with three replicates per treatment, for a total of 18
127 treatment blocks. Research plots measured approx. 0.1 acres in size (45' x 100'), and
128 were buffered by an additional 5' on all sides. Plot corners were surveyed to sub-meter
129 accuracy using a Bad Elf GPS unit.

130 Following ripping (6-8" actual depth, which was less than the desired 10-12"
131 depth), soil amendment treatments were broadcast and then disced 4-6" into the soil. The
132 soil treatment matrix is provided in **Table 1**. The PermaMatrix™ application followed the
133 company guidelines (4,000 lbs per acre, + 500 lbs acre of 7-2-1 fertilizer), and was
134 applied dry. PermaMatrix is often applied as a slurry, but we did not encounter any
135 evidence that a slurry application is more effective than a dry application.

136 The rates of Richlawn are based on the PIs 25 years of experience with this and
137 similar amendments in Colorado upland restoration projects, and also balanced with the

138 experience of staff at Rocky Mountain Bioproducts (Tom Bowman). The Richlawn
139 application rates were also influenced by the N and % SOM in the compost and in the site
140 soils. Soil amendment treatments are summarized as follows:

141 **S-1:** Compost (low rate, at 60 cy/ac) + Richlawn 7-2-1 (at 300 lbs/ac) + seed.

142 **S-2:** Compost (high rate, at 100 cy/ac) + Richlawn 7-2-1 (at 500 lbs/ac) + seed.

143 **S-3:** Perma Matrix (at 4,000 lbs/ac) + Richlawn 7-2-1 (at 500 lbs/ac) + seed.

144 **S-4:** Richlawn 7-2-1 (at 500 lbs/ac) + humic acid (granular, at 300 lbs/ac) + seed.

145 **S-5:** Seed only.

146 **S-6:** Richlawn 7-2-1 (at 500 lbs/ac) + seed.

147

148 Baseline vegetation conditions were determined from a rapid ocular estimate in
149 fall 2024. Soil samples were obtained via five subsamples across the research site,
150 ranging from 6-8" depth. Soil analysis was conducted by Weld Labs. Some of the results
151 (e.g., low SOM and low N), influenced the final N rates applied. Experimental treatments
152 were installed in November, 2024. Photos of the research site following weed
153 management and prior to installation of treatments are provided in **Appendix A**.

154 First-season vegetation cover was assessed in July 2025, via the Line Point
155 Intercept method (Herrick et al., 2005), with six 90-foot transects per treatment plot. Each
156 transect included three Daubenmire plots (1 sq meter) to measure seedling counts. Belt
157 transects were assessed in each transect to capture uncommon species.

158 Vegetation cover was recorded by species and life history trait, when possible.
159 Due to lack of ability to consistently and accurately identify grass and forb seedlings,
160 seedling counts and some cover data were reported to the highest taxa level the

161 monitoring crew felt comfortable using (e.g., introduced grass, grass, forb, native grass).
162 Bare soil (gravel, sand, silt, and clay), and litter cover (all organic matter on the soil
163 surface, including standing dead) was also recorded. Data was analyzed for basic
164 statistics (e.g., means and standard deviation) using standard formulas in MS Excel.

165

166 RESULTS

167 The research site's baseline condition is characterized by about 85% bare soil, 10% non-
168 native plant cover, and 5% litter. Soils are sandy clays, with a neutral to moderately high pH, low
169 N, average salt content, and low to average soil organic matter. Soil lab results are provided in
170 **Appendix B.**

171 Vegetation responses are documented in tables **3 and 4**, by treatment. A summary of
172 those findings is provided here. The **S-1** (low compost) treatment had the highest total
173 vegetation cover, and **S-5** (seed only) had the lowest total vegetation cover. Most of the cover
174 was comprised of *Kochia scoparia*, an early successional non-native weed. The **S-4** (Richlawn +
175 humic acid) treatment had the highest total native plant cover. Total native cover among the other
176 treatments varied between 1.1% (**S-6**, Richlawn alone) and 4.8% (**S-4**, Richlawn + humic acid).

177 Average seedling counts varied from 30 seedlings (**S-3**, PermaMatrix) to 39 seedlings per
178 square meter (**S-5**, seed only). Native grass seedlings represented the largest vegetation
179 classification (75-95% of total seedlings, depending on the treatment), almost entirely comprised
180 of *Sporobolus cryptandrus*, a very small-seeded native plant present in the seed mix and likely in
181 the soil seedbank. Introduced grasses introduced forbs comprised the remainder of seedlings,
182 mostly *Bromus tectorum* and *Kochia scoparia*, respectively.

183 Due to the high standard deviations among treatments with respect to species cover
184 (Table 3), the treatment effects are not statistically significant, and should be interpreted with
185 caution.

186

187 **DISCUSSION**

188 The hypothesis that the low compost application rate would result in the highest
189 vegetation cover was confirmed by this study. However, the dominant vegetation was
190 *Kochia scoparia* (an early successional non-native forb). We did not determine any
191 patterns in the data that would indicate one treatment effect had a more positive outcome
192 on desired native vegetation cover than any other treatment, when considering the
193 standard deviations around the mean. The largest variation in grass seedling counts and
194 vegetation cover appeared to be in the compacted access track running through a portion
195 of the research plots (roughly ¾ the way toward the east end of the research plots). In
196 those areas, total seedling counts and percent total canopy cover were much lower than in
197 surrounding areas (Appendix A, image 4).

198 Discussing treatment application conditions with the pipeline restoration supervisor
199 (Stephen Shoemaker of AloTerra) and David Hirt of Boulder County, a few confounding
200 variables were observed that may have impacted seedling emergence and/or seedling growth in
201 the research plots:

202 • Seeding was done in November, 2024, and the installation crew was juggling multiple snow
203 events, with variable seeding consistency due to soil moisture and frozen soil conditions.
204 • Access for delivery of compost to research plots was limited to a narrow dirt band, which
205 included a portion of the research plots (about ¾ of the way toward the eastern side of the

206 treatment plots). The site was ripped once prior to compost staging, then it was accessed by
207 skids (small to medium sized), then ripped again. David Hirt noticed that this same area may
208 have also been the primary pipeline corridor, due to the number of manholes and location
209 stakes, and as such may have potentially had subsoil mixed with topsoil during the
210 excavation and backfilling process. See **Appendix A**, image 4 for photo of effected area.

211 • There was a concern that the 2nd series of work (once the restoration crew could get back into
212 the site after a series of snow events) down the access road may have compacted the soil
213 further (soil was moist at the time), and so that area was ripped again, to 6-7" deep. The first
214 ripping was also just 6-7" deep, instead of the desired 10-12" deep.

215 • This project was the first time the contractor used their new Brillion seeder. It is possible
216 there were some inconsistencies in the calibration on seeding depth, though this cannot be
217 confirmed. However, the fact that a small-seed native plant (*Sporobolus cryptandrus*) was the
218 dominant plant in seedling counts indicates that the seed mix may have been shallowly sown.

219 • The northern block (A replicate) of the research site had just been mowed by a third-party
220 contractor after treatment installation and prior to the monitoring effort. See **Appendix A**,
221 image 3 for photo of effected plots. This led to a lot of kochia lying horizontally as litter in
222 the plots.

223 • There was good early spring moisture, then the site dried out quickly and severely in
224 June/July.

225 Based on the results, it is tempting to believe that none of the soil amendments
226 was more cost-effective than the other in establishing a desirable stand of native
227 vegetation on this research site. However, we do not support this conclusion due to the
228 first-year results, and due to several confounding variables. Vegetation monitoring in

229 2026 and/or 2027 may provide a different reflection of treatment effects, as new
230 seedlings emerge and as the drought-impacted seedlings from 2025 express themselves
231 more fully. Possible variations in ripping depths, seeding effectiveness, and other
232 variables may have also influence treatment effects.

233 Though two-years of weed management was conducted on the research site prior
234 to installing treatments, the weed treatment effects did result in low enough weed cover
235 (ideally) for a native plant research project. For similar research studies of this type,
236 more thorough weed management treatments and/or the use of a weed-free site would
237 help to reduce the confounding variable of weed cover. Other confounding variables that
238 can be managed should be managed (e.g., seeding consistency, timing of seeding, and
239 others).

240

241 LITERATURE CITED

242

243 **Alexander, R. 2005.** AAPFCO Soil Amendment/Compost Uniform Product Claims. US
244 Composting Council.
245 https://cdn.ymaws.com/www.compostingcouncil.org/resource/resmgr/images/use_compo
246 st/AAPFCO_Uniform_Product_Claim.pdf

247

248 **ECB-VERDYOL. 2024.** Case Studies. <https://bioticearth.com/case-studies>. Accessed on
249 January 11, 2024.

250

251 **EPA. 2007.** *The Use of The Use of Soil Amendments for Remediation, Soil Amendments
252 for Remediation,*
253 *Revitalization, and Reuse.* EPA 542-R-07-013. December 2007.
254 <https://semspub.epa.gov/work/11/176023.pdf>

255

256 **Herrick, J. E....and W.G. Whitford. 2005.** Monitoring Manual for grassland, shrubland
257 and savanna ecosystems, Volume II: Design, Supplementary Methods and Interpretation,
258 2005. USDA-ARS Jornada Experimental Range. University of Arizona Press. <http://usda-ars.nmsu.edu/>

259

260

261 **Myrowich, M. and R. Nelsen. 2024.** The Benefits of Biotics in Erosion Control
262 Materials for Critical Sites: Better Business, Improved Soil and Stronger Vegetation.

263 Verdyol Plant Research. PO Box 69. Riverton, MB R0C 2R0.
264 <https://open.library.ubc.ca/media/stream/pdf/59367/1.0042576/1>
265
266 **Sanders, C. 2023.** Personal communication in June, 2024. A-1 Organics.
267
268
269

270 **FIGURES AND TABLES**

271 All figures and tables are provided below, with the respective figure or table number
 272 referenced in the narrative above.

273

274

275 **Table 1.** Research treatments (actual installed amendments and quantities)

Trt Label	Amendment	Qty Needed	Units	Application Rate	units	Plot Size (sf)	Plot Size (ac)
S-1	Compost (low rate) + Richlawn (7-2-1)	5.6 27.89	cy lbs	60 300	cy/ac lbs/ac	4050 4050	0.093 0.093
S-2	Compost (high rate) + Richlawn (7-2-1)	9.3 46.49	cy lbs	100 500	cy/ac lbs/ac	4050 4050	0.093 0.093
S-3	Perma Matrix (dry applied) + Richlawn (7-2-1)	371.90 46.49	lbs lbs	4,000 500	lbs/ac lbs/ac	4050 4050	0.093 0.093
S-4	Richlawn (7-2-1) + humic acid (granular humate)	46.49 27.89	lbs lbs	500 300	lbs/ac lbs/ac	4050 4050	0.093 0.093
S-5	Seed Only						
S-6	Richlawn only (7-2-1)	46.49	lbs	500	lbs/ac	4050	0.093

283

284 **Table 2.** Upland Seed Mix

Acres (upland): 1.0
Seeds Per Sq. Ft. (Broadcast): 110

Scientific Name (USDA)	Common Name (USDA)	Cultivar or Ecotype	Life History	% Mix	Pounds PLS Needed
<i>Achillea lanulosa</i> var. <i>occidentalis</i>	Western yarrow	Eagle or Yakima	NPF	2	0.03
<i>Adenolimum lewisii</i>	Lewis flax	Maple Grove or CO ecotype	NPF	2	0.32
<i>Aristida purpurea</i>	purple threeawn	CO Ecotype preferred	NPG-L	4	0.74
<i>Artemisia frigida</i>	prairie sagewort	CO Ecotype preferred	NPF	2	0.02
<i>Bouteloua curtipendula</i>	sideoats grama	Niner	NPG-L	8	2.02
<i>Bouteloua gracilis</i>	blue grama	Fremont CO ecotype	NPG-L	10	0.65
<i>Buchloe dactyloides</i>	buffalograss	Cody	NPG-L	7	5.99
<i>Cleome serrulata</i>	Rocky Mountain beeplant	CO Ecotype (or VNS)	NAF	2	0.84
<i>Coreopsis tinctoria</i>	plains coreopsis	CO Ecotype (or VNS)	NBF	4	0.14
<i>Dalea candida</i>	white prairie clover	CO Ecotype preferred	NPF	2	0.26
<i>Elymus elymoides</i>	squirreltail	Pueblo or Wapiti	NPG-L	10	2.50
<i>Elymus trachycaulus</i>	slender wheatgrass	Pryor	NPG-L	12	3.97
<i>Gaillardia aristata</i>	blanketflower	CO Ecotype (or VNS)	NPF	3	0.77
<i>Grindelia squarrosa</i>	curly cup gumweed	CO Ecotype (or VNS)	NBF	2	0.24
<i>Helianthus annuus</i>	common sunflower	CO Ecotype (or VNS)	NAF	1	0.42
<i>Liatris punctata</i>	dotted blazing star	CO Ecotype (or VNS)	NPF	0.5	0.14
<i>Monarda fistulosa</i>	wild bergamot	CO Ecotype (or VNS)	NPF	3	0.10
<i>Pascopyrum smithii</i>	western wheatgrass	Arriba	NPG-L	12	5.05
<i>Penstemon angustifolius</i>	broadbeard beardtongue	CO Ecotype or San Juan Germ.	NPF	2	0.31
<i>Ratibida columnifera</i>	upright prairie coneflower	CO Ecotype (or VNS)	NPF	2	0.12
<i>Rudbeckia hirta</i>	blackeyed Susan	CO Ecotype (or VNS)	NBF	3	0.09
<i>Sporobolus cryptandrus</i>	sand dropseed	CO Ecotype preferred	NPG-L	6	0.06
					Totals: 100 24.8

311 **Table 3.** Ground cover by cover class and by treatment type.
312

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334	313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334											
	313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334		313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334		313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334		313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334		313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334			
Cover Class	Average	StdDv	Average	StdDv								
Bareground	31.7%	10.25	32.0%	25.05	35.6%	15.18	39.2%	13.65	42.7%	24.48	39.3%	22.97
Litter	28.9%	16.35	35.4%	16.83	31.7%	8.05	27.4%	9.43	26.3%	11.35	24.6%	15.14
Forb	0.0%	0.00	0.0%	0.00	0.1%	0.08	0.0%	0.00	0.0%	0.00	0.0%	0.00
NG	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.1%	0.10	0.2%	0.29	0.0%	0.00
IG	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.1%	0.10	0.0%	0.00	0.0%	0.00
Grass	0.2%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.1%	0.00	0.0%	0.00
IAF	30.5%	4.33	28.3%	22.58	27.0%	11.02	23.9%	5.78	22.9%	12.38	34.0%	17.30
IBF	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.1%	0.00	0.0%	0.00	0.0%	0.00
IPF	0.2%	0.00	0.1%	0.12	0.1%	0.00	0.4%	0.00	0.0%	0.00	0.1%	0.02
IPG-L	0.1%	0.00	0.1%	0.10	0.2%	0.24	1.9%	2.70	0.4%	0.19	0.1%	0.00
IAG-L	5.2%	6.97	2.7%	3.86	2.0%	3.18	2.3%	3.37	3.9%	4.58	0.8%	0.71
NAF	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.2%	0.00	0.1%	0.00	0.0%	0.00
NBF	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00
NPF	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00
NPG-L	3.3%	2.18	1.3%	0.48	3.3%	1.40	4.6%	2.97	3.4%	2.59	1.1%	0.31
NAG-L	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00
Metal	0.0%	0.00	0.0%	0.00	0.1%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00
Plastic	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.0%	0.00	0.1%	0.00
Total Cover:	100.0%		100.0%									
Total Veg Cover:	39.4%		32.5%		32.6%		33.4%		31.1%		36.0%	
Total Native Cover:	3.3%		1.3%		3.3%		4.8%		3.7%		1.1%	
Total Non-Native Cover:	35.9%		31.2%		29.2%		28.6%		27.2%		35.0%	
Total Unknown or Other:	0.2%		0.0%		0.1%		0.0%		0.1%		0.1%	

345 **Table 4.** Seedling Counts by Treatment Type
346

	Treatment Type					
	S-1	S-2	S-3	S-4	S-5	S-6
Average Seedling Count / sq.m.:	35	33	30	39	39	37
Seedlings by Taxa (%)						
Forb	0.5%	2.3%	8.7%	4.2%	10.3%	5.4%
NG	93.3%	88.6%	81.6%	90.6%	81.7%	82.8%
IG	3.6%	8.5%	9.7%	5.1%	7.9%	2.3%
AGR CRI	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
ASCSPE	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
BUCDAC	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
BOUCUR	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
BOUGRA	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
BROINE	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
BROTEC	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
CLESER	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
CONARV	0.0%	0.0%	0.0%	0.1%	0.0%	0.0%
DACGLO	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
ELYREP	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
ELYTRA	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
ERACIL	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
EUPDAV	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Euphorbia spp	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
KOCS CO	2.6%	0.7%	0.0%	0.0%	0.0%	9.5%
metal	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
PASSMI	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Plastic	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
RUM CRI	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
SCHSCO	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
SECCER	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Solanum spp	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
SOLTRI	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
SPOCRY	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Sporobolus spp	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Unk grass	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
VERBLA	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Totals:	100%	100%	100%	100%	100%	100%

380

381 **Figure 1.** Map of research site and plot locations.

382

Parkdale Pipeline

383

384

385

386

387

388

389

390

391

392

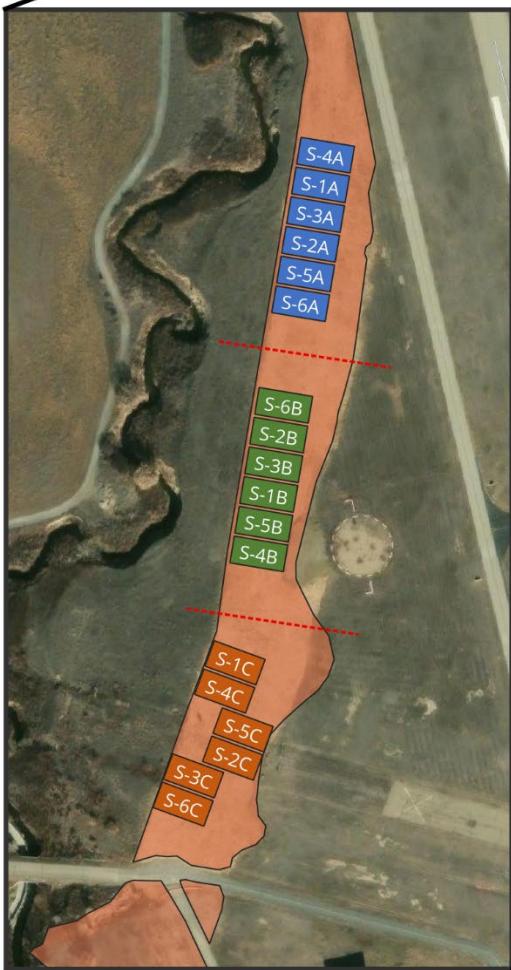
393

394

395

396

397


398

399

400

401

402

Appendix A: Baseline & Monitoring Conditions

Image 1. Baseline Condition: Summer 2023.

Image 2. Baseline Condition: November 2024.

Image 3. Monitoring Condition (Mowed Kochia). July 2025.

Image 4. Monitoring Condition. July 2025. Low seedling cover and total vegetation cover in compacted access road (possibly the original pipeline alignment).

Appendix B: Soil Lab Results